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ABSTRACT 

Soil organic carbon (SOC) plays an integral part in improving soil security, water security, food 
security, energy security, climate change abatement, biodiversity protection, and ecosystem 
services. It is important to understand its stock and spatial distribution for better management. 
However, not many countries have managed to map their national SOC stock and Bhutan is no 
exception. There is paucity of SOC information to clearly formulate plans and programs to 
increase Carbon (C) sequestration and enhance SOC storage in the country. A preliminary 
mapping of SOC stock of Bhutan for the top 30 cm depth was carried out to establish a baseline 
and contribute to global SOC mapping. A total of 993 data points was used for mapping SOC 
stock using regression kriging (RK). Regression tree model and ordinary kriging were used to 
perform the RK with elevation, land use land cover (LULC), slope, aspect, profile and plan 
curvatures, normalized difference vegetation index, SAGA wetness index, mean precipitation, 
mean temperature, geology, and terrain ruggedness index as environmental covariates. The 
model validation was done by repeated data splitting method. Preliminary results show that for 
the top 30 cm depth, Bhutan stores about 0.4 giga tonne carbon (GtC) with SOC density ranging 
from 0.5 to 315.3 ton ha-1. Among the environmental covariates, LULC, topography, and
climatic factors had significant influence on SOC stock and its spatial distribution. SOC stock 
was relatively low in the southern and eastern regions as opposed to the western and northern 
parts of the country. Under different LULC types, the SOC stock was lowest under agriculture 
land and highest under forest. These results are based on a small set of soil data and must be 
used with caution. However, for better SOC stock estimation and mapping, more and well 
distributed soil data will be necessary.  
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1. Introduction

Soil is essentially made up of minerals, organic carbon, water, and air. Among these four main 
components, soil organic carbon (SOC) forms the integral part of a functional soil. This is 
largely because SOC has the ability to improve the soil physical, chemical, and biological 
properties, which can enhance soil security. Enhanced soil security can improve food security, 
water security, energy security, climate stability, biodiversity, and ecosystem services 
(McBratney, Field & Koch, 2014). SOC also plays a key role in global carbon (C) cycle as it is 
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the largest terrestrial C pool. Because of the important role it plays, SOC is often considered as a 
common indicator for soil security, water security, and ecosystem services. Further, SOC stock is 
one of the three indicators in assessing Land Degradation Neutrality (LDN) status by 2030. 
Bhutan being an LDN member country, information on SOC stock and its spatial distribution 
will be vital to assess its LDN status. 

Globally, soil stores about 1500 GtC (1 GtC = 1015gC) in the top one meter (Jobbágy & Jackson,
2000) which is approximately three times as much C found in the biosphere and twice as much C 
found in the atmosphere. For the top 30 cm depth, it stores about 680 GtC (FAO, 2017). 
Assuming that other components of global C cycle remain constant with current CO2

concentration of 390 ppm, a change in global SOC storage by 1% may trigger a shift of about 8 
ppm of CO2 concentration in the atmosphere (Baldock, Wheeler, McKenzie & McBretney, 
2012). This highlights the significance of C sequestration and storage in the soil to mitigate 
climate change. In order to enhance C sequestration and C storage, adequate information on SOC 
is necessary to formulate appropriate land management and C sequestration strategies. However, 
such information is limited in most of the countries, particularly in developing countries. This 
has posed a challenge to land managers in improving soil quality, increasing resilience to climate 
change, and enhancing ecosystem services through better SOC management.  

The National Soil Services Centre (NSSC) under the Ministry of Agriculture and Forests made 
its first attempt to produce the SOC stock map of Bhutan for the top 30 cm depth with 993 
observed data using digital soil mapping (DSM) techniques. The DSM of SOC stock of Bhutan 
was done with the objectives to set up a national baseline on SOC stock and contribute to global 
SOC stock mapping and formulate better C sequestration and SOC management strategies in the 
country. 

2. Materials & Method

2.1. Study area 

Bhutan is a landlocked country located in the Himalayas with China in the north and India in the 
east, west, and south. It has a geographical area of 38,394 km2 with rugged terrain characterized
by ‘V’ shaped valleys and high peaks. The valleys are characterized by narrow alluvial floors, 
fans, and terraces, with the lower slopes and alluvia often mantled with colluvia from upslope 
and aeolian deposits (Baillieet al., 2004; Caspariet al., 2006; Dorjiet al., 2009). Within less than 
200 km (south-north), the altitudinal gradient increases from about 97 m to about 7570 m above 
sea level (masl). As such, there exist several agro-ecological zones with distinct climatic regimes 
in between. Monsoon dominates the climatic condition with annual precipitation varying from 
more than 2000 mm in the south to less than 1000 mm in the north and central parts of the 
country. The mean annual temperature ranges from approximately 14° to 26° C during summer 
and about -3° to 15° C in winter. 

The Himalayan Mountains are young and still rising, leading to landscape dissection and natural 
soil erosion (Singh, Singh & Skutsch, 2010); the latter process is continually affecting soil 



3

development. There are four main soil zones grouped based on altitude i.e. i) moderately 
weathered and leached thin dark topsoil over bright subsoil up to about 3000 masl; ii) very bright 
orange-coloured non-volcanic andosolic soils and iii) acidic soils with thick surface litter that 
grade to weak podzols up to about 4000 m asl; and iv) alpine turf with deep dark and friable 
topsoil over yellowish subsoil mixed with raw glacial deposits above 4000 masl (Baillie et al., 
2004). 

More than 58% of Bhutan’s population depends on agriculture, livestock and forestry for their 
livelihood. However, the cultivated agricultural land accounts only for about 3% of the total land 
area (LCMP, 2010) due to rugged terrain and extreme climatic conditions. As such, more than 
70% of the total agriculture land is located on steep slopes with high incidence of soil erosion. 
On the other hand, about 71% of the country is under forest cover (LCMP, 2010) with very rich 
biodiversity. As expected, the spatial variation of different LULC types is greatly influenced by 
altitude, slope, and climatic regimes. As presented in Figure 1, broadleaf forest is predominant 
below 2500 masl with coniferous forest between 2500m and 3500 masl. However, shrubs and 
grassland occur all along the altitudinal gradient. As anticipated, snow and screes are largely 
confined to areas above 3500 masl. Conversely, agriculture land is mostly located on valley 
bottoms and mountain foot slopes.  

Figure 1.LULC map of Bhutan (LCMP, 2010) 
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2.2. Soil data 

Soil information is limited in Bhutan as not many soil surveys have been done to date. As such, 
its soil resources are basically unexplored and not well documented. For this SOC mapping 
exercise, a total of 993 data points, from previous soil surveys (1997-2017), was used (Figure 1). 
About 80% of the total data points were from soil profile pits while the remaining data points 
were from auger bore holes. Soils were described and sampled based on genetic horizons. 
Samples were analysed for various soil parameters including carbon (C) concentration using 
(Walkley & Black, 1934) and bulk density using core ring method (Blake, Hartge & Klute, 
1986). 

Figure 1.Distribution of soil observation sites 

Since soil samples were collected based on genetic horizons, they had different soil depths and 
this posed a challenge to digitally map SOC stock for a particular soil depth. In this regard, an 
equal-area spline function was fitted to the profile values of the target soil variables using the 
CSIRO Spline Tool V2 (ASRIS, 2011) to convert the horizon-based values to the desired soil 
depth (0-30 cm). The equal-area spline function is based on the quadratic spline model of 
(Bishop, McBratney & Laslett, 1999).

2.3. Acquisition and derivation of environmental covariates 

Digital Soil Mapping (DSM) of any soil property hinges on the use of easily discernible ancillary 
soil and/or environmental attributes. To generate the terrain attributes a 30 m digital elevation 
model (DEM) covering whole Bhutan was extracted from the Shuttle Radar Topography Mission 
(SRTM) elevation data portal (http://earthexplorer.usgs.gov) and was re-sampled to 1 km 
resolution. Slope gradient, aspect, slope curvatures (profile and plan), SAGA wetness index 
(SWI), and terrain ruggedness index (TRI) were derived from the DEM using the System for 
Automated Geo-scientific Analysis (SAGA) software (http://www.saga-gis.org/en/index.html)
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and Arc GIS software (version 10.3). In addition to the above covariates, the LULC data (LCMP, 
2010), geological map (GEO) - Department of Geology and Mines), mean temperature and 
precipitation (www.worldclim.org), and normalized difference vegetation index ( ) were 
used as covariates after re-sampling to 1 km resolution. 

2.4. Spatial modelling of SOC concentration and bulk density 

Digital Soil Mapping (DSM) of any soil property is done with the assumption that a soil property 
of interest is closely associated with easily discernible ancillary environmental variables. This 
enables the target variable to be predicted by establishing relationships between it and the 
ancillary variables (McBratney et al., 2003). Based on this assumption, several methods have 
been used to digitally map the target variable. (Odeh, McBratney & Chittleborough, 1995) 
compared several methods of DSM: multi-linear regression, ordinary kriging, universal kriging, 
isotopic co-kriging, heterotopic co-kriging, and some variants of regression kriging (RK) models, 
and found that RK model to be most superior. A later study by Minasny and McBratney (2007) 
reported RK model to be more practical and robust than other prediction models. We used RK to 
digitally map the SOC stock. 

RK has two main components i.e. regression and kriging (Figure 2). For the regression part, 
regression tree model (RTM) was used (Cubist 2.09 package) with elevation (DEM), LULC, 
slope, aspect, profile and plan curvatures, NDVI, SWI, mean precipitation, mean temperature, 
geology and TRI as covariates to predict the target variable. The RTM is found to be robust and 
appropriate for complex landscapes, such as in the Himalayas. The RTM is a non-parametric 
prediction model, which predicts the target variable based on linear regression models instead of 
discrete values predicted by the classical tree models (Minasny & McBratney, 2008).  



6

Figure 2.Flow chart showing the steps of RK for DSM (adapted from Odeh et al. (1995)).

At each node of the tree model, conventional linear least-squares regression is used to create the 
model associated with each of the terminal rules. Thus, the model generates a set of 
comprehensible rules, each of which has an associated multivariate linear model. When the rule 
conditions are met, the model predicts the target variable for each grid cell that has values for the 
appropriate predictor covariates (Minasny & McBratney, 2008). For the kriging part, the 
residuals, which are the difference between the measured and regressed values, were interpolated 
onto the entire 1 km grid, using a simple kriging, embedded in the package: Variogram 
Estimation and Spatial Prediction plus Error (VESPER) (Minasny, McBratney & Whelan, 2005). 
The final predicted value of the target variable at each 1 km grid cell was computed by summing 
up the regressed value from the RTM and the kriged residual (Figure 2). 

2.5. Data validation 

Any prediction model needs to be validated to assess its accuracy and reliability. It can be done 
either through external or internal validation. The former uses a new validation dataset from the 
same or similar population for validating previous models and is considered to be relatively 
better than internal validation methods. However, the difficulty in obtaining a new independent 
external dataset forces to go for internal validation. Repeated data splitting is a common internal 
validation method and we used this to validate our models. The whole data was partitioned into 
two portions, called the training and validation datasets. The training dataset constituted 70% of 
the total data points (698 points) and was selected through a simple random sampling 
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procedure.The remaining 30% data was used as a validation dataset. Firstly, RTM was fitted 
onto the training dataset (using Cubist 2.09) and the model was used to predict the target variable 
for the validation dataset. Secondly, the residuals for the training dataset were calculated by 
subtracting the regressed values from the measured values of the target variable. Thirdly, the 
residuals of the training dataset were kriged to predict the residuals of the validation dataset 
using VESPER. The final RK predictions for the validation dataset was obtained by summing the 
regressed values from RTM and kriged values (Figure 2). The performance of the RK model was 
assessed by plotting the predicted values with measured values of the validation dataset. This 
whole process was repeated for 10 times to assess the stability of the prediction accuracy of the 
RK model. At each iteration, the statistical parameters including: (i) root mean square error 
(RMSE), (ii) coefficient of correlation (R), (iii) coefficient of determination (R2), and (iv) mean
error (ME) were determined and averaged at the end to provide the overall prediction accuracy 
of the model. The RMSE, which provides a measure of accuracy of the prediction method, is 
defined as: 

(1) 

and the ME (Odeh et al., 1995), which measures bias of prediction, is defined as: 

(2) 

where and are the observed and predicted values, respectively (Eq. 1 and 2). For
more accurate prediction, the RMSE should be as small as possible while the ME should be close 
to zero.  

2.6. Computing SOC stock 

Although SOC density and SOC stock are often used interchangeably in literature (Minasny et 
al., 2006), they differ in scale and unit (Dorji et al., 2014). SOC density is the SOC mass per unit 
area for a given depth, which can be calculated as: 

(3) 

where is SOC density (kg m-2), is SOC concentration (kg/kg), is bulk density (kg
m-3) and is depth interval thickness (m). On the other hand, SOC stock is the actual SOC mass
for a given soil depth and area. It was calculated by summing up the product of SOC density and 
area of the smallest mapping unit e.g. grid cell 1 × 1km2.

(4) 

where is SOC stock in metric tonne , is number of 1 km grid cells, is SOC 
density of grid cell for a particular depth interval (kg m-2), is an area of 1 km grid cell (1km2)
and is the unit conversion factor.
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3. Results and Discussion

3.1. Spatial modelling of SOC concentration and bulk density 

As shown in Table 1, the RTM based on the whole dataset (993 data), used MT, GEO, NDVI, 
PLCUR, slope, ASP, MP, and ALT as conditions to perform the regression for SOC 
concentration. However, MP, MT, ALT, NDVI, TRI, slope, ASP, SWI, PLCUR, and PRCUR 
were used as covariates. Similarly, for bulk density, MP, ALT, SWI, MT, PRCUR, NDVI and 
ASP were used as conditions and MT, MP, ALT, NDVI, TRI, SWI, slope, PRCUR, PLCUR, and 
ASP as covariates. Among the environmental covariates, MP, MT, ALT, and NDVI showed 
more influence on both SOC concentration and bulk density, and their spatial distributions 
(Table 1).  

Table 1.Usage (%) of covariates in the RTM for predicting SOC concentration and bulk density 

Attribute usage For SOC Concentration (0-30 cm depth)

Conditions (Usage in %) MT (99%) GEO (72%) NDVI (43%) PLCUR (32%)

Slope (25%) ASP (24%) MP (13%) ALT (9%)

Environmental covariates used in 

regression tree model (Usage in %)

MP (89%) MT (86%) ALT (70%) NDVI (60%)

TRI (57%) Slope (48%) ASP (46%) SWI (41%)

PLCUR (14%) PRCUR (11%)

Attribute usage For Bulk density (0-30cm depth)

Conditions (Usage in %) MP (75%) ALT (49%) SWI (45%) MT (32%)

PRCUR (12%) NDVI (9%) ASP (8%)

Environmental covariates used in 

regression tree model (Usage in %)

MT (99%) MP (95%) ALT (91%) NDVI (81%)

TRI (74%) SWI (67%) Slope (62%) PRCUR (31%)

PLCUR (20%) ASP (13%)

TRI terrain ruggedness index, SWI SAGA wetness index, NDVI normalized difference vegetation index, MT mean 
temperature, MP mean precipitation, ASP aspect, PLCUR plain curvature, PRCUR profile curvature, ALT altitude, 
GEO geology. 

Overall, the RTM performed well as indicated by low average error (AE) and ME for both SOC 
concentration and bulk density (Table 2). The AE was 0.89 g/100 g for SOC concentration and 
0.05 g cm-3 for bulk density. The relative errors (RE) for both SOC concentration and bulk
density were less than 1. The coefficient of determination (R2) was moderately high for both
SOC concentration (0.59) and bulk density (0.88). Looking at R2 and ME values, the RTM was
more robust and less bias in predicting bulk density than SOC concentration. This could be 
attributed to less spatial variation of bulk density compared to SOC concentration. 
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Table 2.Overall performance of RTM in predicting SOC concentration and bulk density 

Depth (cm) SOC (g/100g) Depth (cm) Bulk density (g cm-3)

AE RE ME RMSE R2 AE RE ME RMSE R2

0 - 30 0.89 0.61 0.005 1.34 0.59 0 - 30 0.05 0.23 0.0001 0.09 0.88

SOC soil organic carbon, AE average error, RE relative error, ME mean error, RMSE root mean square error, R2

coefficient of determination 

3.2. Validation of RTM and RK models 

The overall performance of RTM and RK, in predicting SOC concentration and bulk density, 
was done using the repeated data splitting method. Based on the statistical parameters presented 
in Table 3 and 4, both RTM and RK performed better in predicting bulk density than SOC 
concentration. However, when compared between RTM and RK models, RK was supper in 
predicting both SOC concentration and bulk density with relatively low ME and RMSE and high 
coefficient of determination (R2) (Table 3 & 4). Thus, RK was used to digitally map SOC stock.

Table 3.Performance of RTM in predicting SOC concentration and bulk density 
Depth (cm) SOC (g/100g) Depth (cm) Bulk density (g cm-3)

AE RE ME RMSE R2 AE RE ME RMSE R2

0 - 30 0.82 0.57 0.11 1.49 0.44 0 - 30 0.04 0.17 0.002 0.11 0.85

ME mean error, RMSE root mean square error, R2 coefficient of determination 

Table 4.Performance of RK in predicting SOC concentration and bulk density 
Depth (cm) SOC (g/100g) Depth (cm) Bulk density (g cm-3)

ME RMSE R2 ME RMSE R2

0 - 30 0.05 1.43 0.46 0 - 30 0.001 0.10 0.85

ME mean error, RMSE root mean square error, R2 coefficient of determination 

3.3. SOC density under different LULC types 
Since SOC density provides better information for SOC storage than SOC concentration, SOC 
density (1×1 km2 grid) was computed by multiplying RK predicted SOC concentration with bulk
density (Eq. 1). Figure 3 shows relatively low SOC density in the valley bottoms where most of 
the agriculture fields are located. However, the upper slopes, which are mostly under forest, 
shrubland and grassland, have comparatively high SOC density. This indicates a strong influence 
of LULC and landform on the spatial distribution of SOC density. Under different LULC types, 
the mean SOC density for the upper 30 cm depth decreased in the order of mixed conifer forest> 
fir forest> others> grassland> shrubland> blue pine forest> marshy land> horticulture> dry 
land> paddy land> built-up areas> chirpine forest (Table 4). This is in line with the results 
reported by (Dorji, Odeh, Field & Baillie, 2014). 
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Table 4.Predicted SOC density under different LULC types (0-30 cm depth) 

Sl # LULC type Mean SOC (t/ha) Sl# LULC type Mean SOC (t/ha) Sl#LULC type Mean SOC 

(t/ha)

1 Paddy land 62.16 6 Blue Pine Forest 84.79 11 Horticulture 71.58

2 Dry land 64.05 7 Chir Pine Forest 51.54 12 Marshy Area 74.1

3 Built Up Areas 60.52 8 Fir Forest 102.35 13 Shrubland 92.49

4 Degraded Land 81.75 9 Mixed Conifer Forest 105.21 14 Others 101.42

5 Broadleaf Forest 75.35 10 Grassland 98.26

Figure 3.Predicted SOC density (1×1 km2 grid) for the top 30 cm depth

The SOC stock for each grid was computed (Eq. 2) and added to estimate the overall SOC stock 
for the entire country. The preliminary results show that for the top 30 cm depth, Bhutan stores 
about 0.4 GtC with SOC density ranging from 0.45 to 315.28 ton ha-1. The SOC stocks in the
southern and eastern regions are relatively small as opposed to the western and northern parts of 
the country (Fig. 3). This is chiefly due to less forest cover and high rate of mineralization in the 
eastern and southern regions, respectively. The SOC stock under different LULC types was quite 
similar to what (Dorji et al., 2014) reported with SOC stock lowest under agriculture land and 
highest under forest. 
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4. Conclusion

The preliminary results show that Bhutan stores about 0.4 GtC in the top 30 cm depth. But the 
challenge now is how to maintain it against the backdrop of increased land degradation, 
unsustainable land management, and climate change. In this regard, land and land-based natural 
resources should be sustainably managed to reduce C emission and increase C sequestration. 
Furthermore, appropriate plans and policies need to be put in place to combat land degradation 
and increase SOC storage to mitigate climate change and enhance ecosystem services. This is the 
first attempt made to map SOC stock in Bhutan (0-30 cm depth) using DSM techniques. Since a 
small dataset was used for mapping SOC stock, the results presented here may not be very 
accurate and comprehensive. Hence, the information on SOC density and SOC stock should be 
used with caution. For more accurate and reliable SOC stock estimation and mapping, more and 
evenly distributed soil data is necessary. Furthermore, the capacity of the national staff on DSM 
needs to be developed.  
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